
12
3

4
5 6 7

8

9
10

11

12

13

1 2 �a, b

4a, b �

C
H

O
1'

1'
R= CH3 

1' 2' 3'
CH2 CH CH2 

CH

CO2

CH2

CH3

CO2 CH3
* 1' 2' 3' 4''

5' 6'

CH2 CH2 C N   
1' 2' 3'

7a, b 9a, b
O

O

2'  

1'

3'
4'

10'
5'

6'

7'

8'9'

8

C C

C
O

CO2H

HH

1'

2' 3'
4'

7'

6'

5'

4'

3'

2'

1'

Cl

O
O

O

Cl*

6

Cl

O
O

O

1'

2'

3'
4'

5'

6'
7'

*Asymmetric center

N-R

O

N

Institute of Organic Chemistry, Ufa Scientific Center of the Russian Academy of Sciences, 450054, Ufa, Prospekt
Oktyabrya 71, fax (3472) 35 60 66, e-mail: chemorg@anrb.ru.  Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp.
301-305, July-August, 2001.  Original article submitted May 11, 2001.

0009-3130/01/3704-0356$25.00  2001 Plenum Publishing Corporation©
356

Chemistry of Natural Compounds, Vol. 37, No. 4, 2001

SYNTHESIS AND STEREOCHEMISTRY OF NEW 

N-SUBSTITUTED CYTISINE DERIVATIVES

T. V. Khakimova, O. A. Pukhlyakova, G. A. Shavaleeva, UDC 547.94;543422.25;541.620;
A. A. Fatykhov, E. V. Vasil11eva, and L. V. Spirikhin 547.834.2;547.514.472.1    

 

A series of new N-substituted cytisine derivatives was synthesized.  The H and C NMR spectra of certain1   13

compounds exhibit a doubled set of signals.  This is explained by formation of diastereomeric pairs in
compounds containing an asymmetric center in the substituents.  The signal splitting in -COHC�CHCO H2
and HC�O (formyl) derivatives is explained by the existence of Z and E invertomers.  Their stereochemical
features are discussed.  Amide conjugation is confirmed by temperature experiments.

Key words: cytisine, derivatives, amide conjugation, H and C NMR spectra.1   13

The alkaloid cytisine is a representative of natural 3,7-diazabicyclo[3.3.1]nonanes.  It is used in medicine [1] because
it possesses a wide spectrum of biological activity.  Its derivatives are interesting for studying the biological activity of chiral
3,7-diazabicyclo[3.3.1]nonanes and in structural studies.

We synthesized a series of N-substituted cytisines: N-methylcytisine (1) [2], N-allylcytisine (2), N-formylcytisine (3a
and b), dimethyl-2-(N-cytisinyl)succinate [3] (4a and b), N-(�-nitrilopropyl)-cytisine (5) [2], 1,4-dioxa-7-chloro-6-N-
cytisinylspiro[4.4]non-6-en-8-one (6), 1,4-dioxa-7,9-dichloro-6-N-cytisinylspiro[4.4]non-6-en-8-one (7a and b), 2-N-cytisinyl-
1,4-naphthoquinone [3] (8), and 4-oxo-4-(N-cytisinyl)butenoic acid (9a and b) [3].
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TABLE 1.  C NMR Parameters of Cytisine and Its Derivatives13

C Cytisine 1 2 3a 3b 4a 4b 5 6 7a 7b 8 9a 9b

2 163.37 163.44 163.48 163.20 163.05 163.34 163.34 163.25 164.01 165.4 165.31 163.49 163.1 163.2

3 116.38 116.38 116.37 117.65 117.34 116.63 116.50 116.47 116.01 117.43 117.43 117.70 117.05 116.81

4 138.53 138.47 138.44 138.59 138.96 138.66 138.66 138.46 139.92 141.39 141.34 138.80 139.42 139.43

5 104.70 104.54 104.35 105.75 105.00 104.62 104.62 104.39 104.10 105.11 105.30 105.49 105.17 105.29

6 150.89 151.32 151.46 147.93 147.93 151.07 150.75 150.61 148.93 149.91 149.91 153.98 150.56 150.87

7 35.32 35.16 35.35 33.68 34.40 34.40 34.29 34.98 34.93 36.26 36.03 35.10 35.16 35.16

8 26.03 25.13 25.77 26.12 26.17 25.62 25.62 25.31 24.97 26.14 26.06 28.08 26.07 25.96

9 27.50 27.69 27.88 26.92 26.54 28.25 27.59 27.57 27.91 29.26 29.03 25.97 27.91 27.91

10 49.48 49.77 49.83 48.73 48.48 49.77 49.54 49.55 48.52 48.76 48.76 48.88 49.58 49.39

11 52.72 61.93 59.73 51.99 45.88 60.40 60.23 59.65 53.98 56.36 55.63 55.38 54.20 48.83

13 53.69 62.24 60.11 46.94 53.24 63.17 62.97 59.11 53.14 54.74 55.43 55.87 47.85 52.82

11 - 45.99 134.87 160.97 161.09 53.58 52.98 52.65 63.81 63.78 63.78 183.85 166.86 167.14

21 - - 117.03 - - 34.40 34.29 15.32 62.07 63.58 63.58 148.76 137.31 137.81

31 - - - - - 171.12 171.12 118.19 107.51 108.91 109.11 113.38 125.25 125.42

41 - - - - - 51.44 51.44 - 160.05 160.11 159.97 182.05 166.18 166.50

51 - - - - - 170.71 170.82 - 107.51 109.71 109.65 125.53;

61 - - - - - 51.85 51.73 - 191.68 187.26 187.09 132.70;

71 - - - - - - - - 45.08 66.59 66.41 132.01;

126.83 (C8)

133.85 (C7)

132.55 (C10)

In the present article, we discuss the spectral properties of these compounds.  The physicochemical properties of 1 and
5, which have been previously synthesized, correspond to those published [4, 5].  Thus, reaction of cytisine with allylbromide
or formic acid gives N-allylcytisine 2 or N-formylcytisine 3a and b in yields of 87 and 95%, respectively; reaction of 1,4-dioxa-
6,7,9-trichlorospiro[4.4]non-6-en-8-one [6] or 1,4-dioxa-7,9-dichlorospiro[4.4]non-6-en-8-one [7] with cytisine gives 1,4-dioxa-
7,9-dichloro-6-N-cytisinylspiro[4.4]non-6-en-8-one (7a and b) or 1,4-dioxa-7-chloro-6-N-cytisinylspiro[4.4]non-6-en-8-one
(6) in yields of 75 and 64%, respectively.

Analysis of the H and C NMR spectra revealed that a doubled set of signals is observed for 3, 4, 7, and 9 (Table 11   13

lists C NMR spectral data of the studied compounds).  According to the literature [8-10], adding substituents to the N has no13

effect on the conformation of the cytisine core.  This is confirmed by the fact that the chemical shifts of bridging C-8, which
are sensitive to conformational changes, are practically the same.

Compounds 4a and b and 7a and b are pairs of diastereomers that are formed when addition of a substituent creates
an asymmetric center.  Signals for stereoisomeric 4a and b and 7a and b were assigned based on integrated intensities in the
H and C NMR spectra [11, 12].1   13

It is interesting that the chiral centers in 7a and b are located six bonds from each other.  Nevertheless, the
diastereomeric splitting reaches 0.3 ppm.  The N atom located between the chiral centers probably intensifies the transfer of
magnetic shielding by the asymmetric nuclei [13, 14].  Diastereomerism was not observed previously in cytisine derivatives with
an asymmetric center in the substituent [15, 16].  Formation of 3 and 9 also produces two stereoisomers.  The maximum
difference for C-11 and C-13 in these instances is 1-2 ppm.  Invertomers with hindered rotation around the N–C bond, which
are considered to be Z and E isomers, appear because of the formation of amide conjugation [17, 18].  Assignments were made
for 3 and 9.  The chemical shifts of H-8, H-9, and H-7 in the H NMR of 3a and b are the same.  All other give a pair of signals1

of equal intensity.  The major and minor resonances of the formyl proton occur as two singlets (3:2) at 7.88 and 7.65 ppm,
respectively, i.e., they have an unusual strong-field shift compared with that expected (~11 ppm).  Crystals of the pure compound
dissolve in dry CDCl .  The difference ∆δ = 7.88 - 7.65 is independent of solvent.  Therefore, the difference in the chemical3
shifts is explained only by the different stereochemistry.   Double  resonance,  integration by parts, and 2D experiments were
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    Fig. 1.  Two-dimensional COSYHH-45 spectrum of formylcytisine 
(3a, 3b).                                                                                      

performed to determine unambiguously all interactions in each isomer.  The 2D COSY-45 (Fig. 1) and COSYLR-45 spectra
include  two subspectra for each isomer.  The pairs of geminal protons at 2.95-4.58 and 2.9-4.52 ppm have the greatest
difference in chemical shifts.  They correspond to the C atoms at 45.88 and 46.94, respectively, as expected from the 2D
heteronuclear correlation spectra.  Such a diastereotopic shift is due to the presence of a cis-carbonyl in the substituent on N
[19].  Therefore, one pair of geminal protons in the Z-isomer should belong to C-13; in the E-isomer, to C-11.  The axial proton
on C-11 is broadened owing to through-space coupling with the axial proton on C-10, which in the one-dimensional spectrum
has a constant of 1.1 and 1.3 Hz in different isomers.  Therefore, the minor component is the E-isomer with C-11 at 45.88 ppm
and H  (2.95 ppm) and H  (4.58 ppm).   Other  pairs of protons H  (3.45 ppm) and H  (3.56 ppm) on C (53.24 ppm) and Ha e a e a
(3.44 ppm) and H  (3.53 ppm) on C (51.99 ppm) belong to C-13 in the E-isomer and C-11 in the Z-isomer, respectively.  Thise
agrees with the literature [20, 21].  The signal in similar systems with the C atom trans to a carbonyl is located at weaker field
and to a greater extent in the E-isomer [19].  The resonance of an axial proton trans to a carbonyl in the Z-isomer is also at
weaker field relative to that in the E-isomers [19].  In COSYLR, where through-space couplings have stronger cross-peaks, the
following couplings are seen: for the Z-isomer [H-11 with H -13], for the E-isomer [H-11 with H -11].a a

Thus, the signal for an aldehyde proton in the Z-isomer is shifted to weaker field compared with that for the E-isomer
apparently due to deshielding of the magnetically anisotropic C-2 carbonyl because the molecular symmetry is destroyed only
by the pyridone ring.  Assignments were made for 4-oxo-4-(N-cytisinyl)butenoic acid (9a and b) as follows.  Amide conjugation
occurs also in this instance.  However, cis and trans isomerization around the C�C double bond is absent.  This is confirmed
by the identical spin—spin coupling constants between protons on C-21 and C-31 (11.9 Hz).  However, the E-isomer
predominates in this instance (3:2).  Furthermore, the H NMR spectra of 9a and b show that the vicinal protons on C-21 and1

C-31 of one isomer are located at weaker field.  The signal of one of them is shifted to weak field up to 6.5 ppm.  Such magnetic
deshielding can be explained by the Z-conformation.  We can exclude H-bonding because the IR spectrum lacks the
characteristic absorption band.  The presence of amide conjugation was confirmed by varying temperature.  Thus, heating 9a
and b to 100 C causes the signals to coalesce in the C NMR because of free rotation of the substituent around theo 13

N–COCHCHCO H bond.2

EXPERIMENTAL

NMR spectra were recorded on a Bruker AM-300 spectrometer ( H, 300.13; C, 75.47 MHz).  Chemical shifts are1   13

given vs. CDCl , 77.1 ppm; (CD ) CO, 28.83; DMSO-d , 39.43 ( C) and 7.27, 2.07, and 2.50 ppm ( H).  IR spectra were3 3 2 6
13        1

recorded on a UR-20 instrument as thin layers or in mineral oil.  Mass spectra were obtained in a MX-1300 spectrometer with
source temperature 100 C and ionizing-electron energy 70 and 12 eV.o

N-Allylcytisine (2).  A mixture of cytisine (3.39 g) and K CO  (4.5 g) in acetone (75 mL) was stirred under N  and2 3 2
treated with N-allylbromide (1.56 mL, 0.2-mL portions) over 10 min.  The mixture was boiled for 11 h.  After the reaction was
finished K CO  was filtered off and washed with acetone.  The filtrate was evaporated.  The solid was purified by dissolving2 3
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in CH Cl  and passing through a layer of Al O .  Solvent was evaporated to give 4.85 g (87%) of a white crystalline powder2 2 2 3
of N-allylcytisine, mp 117-118 C.o

Found (%): C 73.08, H 8.00, N 12.15. C H N O. Calc. (%): C 73.01, H 7.88, N 12.16.14 18 2

IR spectrum (KBr, ν/cm ): 2900-2980 (CH ), 2870, 2810, 1660 (N–C�O), 1585 (C�C–C�O), 1560, 960, 820, 760-1
2

(C�C).
H NMR (CDCl , δ, ppm, J/Hz): 1.68 [1H, dt, H1C(8), J = -12.7, J  = J  = 3.0], 1.8 [1H, dt, H2C(8), J = -12.7,1

3
2 3

8-9  8-7
3 2

J  = J  = 3.0], 2.18 [2H, m, HC(13)], 2.45 [1H, m, HC(9)], 2.75-2.95 [5H, m, H C(11), H C(11), HC(7)], 3.82 [1H, dd,3
8-9  8-7

3
2 2

H C(10), J = -15.4, J  = 6.7], 3.94 [1H, d, H C(10), J = -15.4], 4.94 [2H, m, HC(31)], 5.45-5.60 [1H, m, HC(21), J  =a
2 3

10-9                  2-1e
2 3

6.1], 5.90 [1H, d, HC(5), J  = 6.8], 6.36 [1H, dd, HC(3), J  = 9.0, J  = 1.1], 7.19 [1H, dd, HC(4), J  = 9.0, J  = 6.8].3
5-4       3-4   3-5       3-4   5-4

3 4 3 3

Mass spectrum (EI, 70 eV), m/z [I  (%)]: 230 [M]  (50), 189 (7), 147 (15), 146 (30), 169 (30), 84 (100).rel
+

N-Formylcytisine (3a and b).  A solution of cytisine (0.2 g, 1 mmole) in acetic acid (2 mL) was treated with formic
acid (90%, 6 mL, 5 mmole) and boiled for 2 h (TLC monitoring).  The solvent was evaporated.  The product was isolated by
column chromatography on SiO  (CHCl :CH OH, 1:1).  Yield 0.22 g (95%) of 3a and b as a white crystalline powder, mp 169-2 3 3
171(C.  Found (%): C 60.72, H 6.39, N 11.61. C H N O . Calc. (%): C 66.04, H 6.47, N 12.84.12 14 2 2

IR spectrum (KBr, ν/cm ): 1648 (N–C�O), 1632 (N–C�O), 1540, 1440, 1416, 804, 744 (C�C).-1

Mass spectrum (EI, 70 eV), m/z [I  (%)]: 218 [M]  (100), 190 (14), 189 (12), 147 (30), 146 (80).rel
+

H NMR  (3a, Z-isomer)  (CDCl , δ, ppm, J/Hz): 2.09 [2H, m, H C(8)], 2.50 [1H, m, HC(9)], 2.95 [1H, d,  H (13),1
3 2 a

J = -13.0], 3.09 [1H, m, HC(7)], 3.44 [1H, dd, H (11), J = -13.4, J = 1.1], 3.53 [1H, d, H C(11), J = -13.4], 3.88 [1H, ddd,2
a

2 4
e

2

H C(10), J = -15.73, J  = 6.4, J  = 1.1], 4.06 [1H, d, H C(10), J = -15.73], 4.52 [1H, d, H C(13), J = -13.0], 6.00 [1H,a
2 3

10-9   10-11
3

e
2

e
2

dd, HC(5), J  = 6.8, J  = 1.6], 6.40 [1H, dd, HC(3), J  = 9.1, J  = 1.6], 7.25 [1H, dd, HC(4), J  = 6.8, J  = 9.1],3
5-4   5-3       3-4   3-5       4-5   3-4

4 3 4 3 3

7.88 [1H, s, COH].
H NMR (3b, E-isomer) (CDCl , δ, ppm, J/Hz): 2.09 [2H, m, H C(8)], 2.50 [1H, m, HC(9)], 2.90 [1H, dd, H C(11),1

3 2 a
J = -13.4], 3.09 [1H, m, HC(7)], 3.45 [1H, m, H C(13), J = -13.0], 3.56 [1H, d, H C(13), J = -13.0, J  = 1.3], 3.82 [1H,2

a
2

e
2 3

10-11

ddd, H C(10), J = -13.0, J  = 6.2, J  = 1.3], 4.06 [1H, d, H C(10), J = -13.4], 4.58 [1H, d, H C(11), J = -13.4], 6.08a
2 3

10-9   10-11
3

e
2

e
2

[1H,  dd,  HC(5),  J  = 6.8,  J  = 1.6],  6.41  [1H, dd, HC(3),  J  = 9.1,  J  = 1.6],  7.25  [1H, dd, HC(4), J  = 6.8,3
5-4    5-3          3-4    3-5         4-5

4 3 4 3

J  = 9.1], 7.65 [1H, s, COH].3
3-4

1,4-Dioxa-7,9-dichloro-6-N-cytisinylspiro[4.4]non-6-en-8-one (7a and b).  A solution of 1,4-dioxa-6,7,9-
trichlorospiro[4.4]non-6-en-8-one (0.2 g, 0.82 mmole) and cytisine (0.23 g, 1.2 mmole) in benzene (5 mL) was boiled for 3 h.
The  solvent  was  evaporated.   The  solid  was  dissolved  in aqueous NaCl (10 mL).  The product was extracted by CHCl3
(3×10 mL).  The combined organic extracts were dried over MgSO  and evaporated.  The product was purified by column4
chromatography over SiO  (benzene:methanol, 7:1).  Yield 0.25 g (75%) of 1,4-dioxa-7,9-dichloro-6-N-cytisinylspiro[4.4]non-6-2
en-8-one.

Found (%): C 54.52, H 4.91, N 6.78, Cl 17.55. C H O Cl N . Calc. (%): C 54.45, H 4.63, N 7.08, Cl 17.80.18 18 4 2 2

IR spectrum (KBr, ν/cm ): 1720 (C�O), 1660 (N–C�O), 1610, 1580 (C�C–C�O), 820, 760 (C�C).-1

H NMR (7a) (CDCl , δ, ppm, J/Hz): 1.90 [2H, m, HC(8)], 2.49 [1H, m, HC(9)], 3.12 [1H, m, HC(7)], 3.28 [1H, d,1
3

HC(11), J = -12.4], 3.44 [1H, d, HC(13), J = -13.0], 3.81 [1H, dd, HC(10), H C(10), J = -15.4, J  = 5.7], 3.93-4.37 [7H,2 2
a

2 3
10-9

m, H C(61), H C(71), HC(41), H C(10), H C(13)], 4.44 [1H, d, H C(11), J = -12.4], 6.01 [1H, d, HC(5), J = 6.8], 6.36 [1H,2 2 e e e
2 3

dd, HC(3), J  = 9.0, J  = 1.1], 7.19 [1H, dd, HC(4), J  = 9.0, J  = 6.8].3
3-4   3-5       3-4   5-4

4 3 3

H NMR (7b): 1.90 [2H, m, HC(8)], 2.58 [1H, m, HC(9)], 3.08 [1H, m, HC(7)], 3.31 [1H, d, HC(11), J = -12.4], 3.421 2

[1H, d, HC(13), J = -13.0], 3.73 [1H, dd, HC(10), H C(10), J = - 15.4, J  = 5.7], 3.93-4.37 [7H, m, H C(61), H C(71),2
a

2 3
10-9 2 2

HC(41), H C(10), H C(13)], 4.44 [1H, d, H C(11)], 6.01 [1H, d, HC(5), J = 6.8], 6.36 [1H, dd, HC(3), J  = 9.0, J  = 1.1],e e e
2 3

3-4   3-5
4

7.19 [1H, dd, HC(4),  J  = 9.0, J  = 6.8].3
3-4   5-4

3

1,4-Dioxa-7-chloro-6-N-cytisinylspiro[4.4]non-6-en-8-one (6) was prepared analogously to 7a and b from 1,4-dioxa-
6,7-dichlorospiro[4.4]non-6-en-8-one.  Yield 64%.

IR spectrum (KBr, ν/cm ): 1720 (C�O), 1660 (N–C�O), 1610, 1580 (C�C–C�O), 820, 760 (C�C).-1

H NMR (acetone-d , δ, ppm, J/Hz): 1.68-1.87 [2H, m, HC(8)], 2.30 [1H, m, HC(9)], 2.97 [1H, m, HC(7)], 3.05-3.201
6

[2H, m, HC(13)], 3.40-3.55 [2H, dd, HC(10), J = 15.4, J  = 6.8], 3.85-4.30 [6H, m, 2HC(11), 4H, O–CH –CH –O], 4.422 3
10-9 2 2

[1H, d, HC(41), J = -13.0], 4.63 [1H, d, HC(41), J = -13.0], 6.04 [1H, d, HC(5), J  = 6.6], 6.43 [1H, d, HC(3), J  = 9.0],2 2 3
4-5       3-4

3

7.15 [1H, dd, HC(4), J  = 9.0, J  = 6.6].  Mass spectrum (EI, 70 eV), m/z [I  (%)]: 362 [M] , 345, 319, 216, 172, 146.3
3-4   5-4          rel

3 +

4-Oxo-4-(N-cytisinyl)butenoic Acid (9a and b).  A solution of cytisine (0.190 g, 1 mmole) in toluene (5 mL) was
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treated dropwise with maleic anhydride (0.196 g, 2 mmole).  The mixture was stirred at room temperature for 24 h.  The white
precipitate was filtered off and washed with acetone.  Yield 0.216 g (75%), mp 215-217 C.  Found (%): C 64.65, H 5.91, N 9.79.o

C H N O . Calc. (%): C 62.49, H 5.59, N 9.72.15 16 2 4

IR spectrum (KBr, ν/cm ): 3480, 3435, 3110 (OH), 1715 (C�C–CO H), 1660-1620 (N–C�O, C�C), 835, 770, 760,-1
2

720 (C�C).
Mass spectrum (EI, 70 eV), m/z [I  (%)]: 288 [M]  (15), 190 (70), 189 (30), 148 (50), 147 (75), 146 (85), 98 (60),rel

+

54 (100).
H NMR (9a, E-isomer) (DMSO, δ, ppm, J/Hz): 1.93 [2H, br.s, H C(8)], 2.50 [1H, br.s, H C(9)], 2.88 [1H, d, H C(11),1

2 a a
J = -13.2], 3.12 [1H, br.s, HC(7)], 3.22 [1H, d, H C(13), J = -13.1], 3.27-3.50 [m, COH], 3.60-3.80 [2H, m, H C(10),2

a
2

2 a
H C(13)], 3.88 [1H, d, H C(10), J = -15.5], 4.48 [1H, d, H C(11), J = -13.2], 5.84 [1H, d, HC(31), J  = 11.9], 5.90 [1H,e e

2
e

2 3
31-21

d, HC(21), J  = 11.9], 6.16 [1H, d, HC(5), J  = 6.7], 6.21 [1H, d, HC(3), J  = 7], 7.27-7.37 [1H, m, HC(4)].3
21-31       5-4       3-4

3 3

H NMR (9b, Z-isomer) (DMSO, δ, ppm, J/Hz): 1.93 [2H, br.s, H C(8)], 2.50 [1H, br.s, H C(9)], 2.91 [1H, d, H C(13),1
2 a a

J = -13.2], 3.17 [1H, br.s, HC(7)], 3.28-3.50 [2H, m, H C(11), CO H], 3.65 [3H, m, H C(10), H C(11), H C(10)], 4.31 [1H,2
a 2 a e e

d, H C(13), J = 13.2], 5.92 [1H, d, HC(31), J  = 11.9], 6.16 [1H, d, HC(5), J  6.7], 6.23 [1H, d, HC(3), J  = 7], 6.49e
2 2

31-21       5-4      3-4
2 3

[1H, d, HC(21), J  = 11.9], 7.27-7.37 [1H, m, HC(4)].2
21-31
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